

PHYSICAL SCIENCES

Paper - III

1. For second order differential equation $\mathrm{L}(\mathrm{y})=\mathrm{f}(\mathrm{x})$, Green's function is $\mathrm{G}(\mathrm{x}, \mathrm{t})$. Then
(A) $L(G)=f$
(B) $\mathrm{G}^{\prime}(\mathrm{x}, \mathrm{t})$ is discontinuous at $\mathrm{x}=\mathrm{t}$
(C) G exists for IVP
(D) $\mathrm{y}=\int \mathrm{L}(\mathrm{G}) \mathrm{dt}$
2. One dimensional wave equation in x, t admits a solution which is
(A) Oscillating in t and x
(B) Oscillating in x and exponential in t
(C) Oscillating in t and exponential in x
(D) Exponential in x and t
3. One dimensional heat conduction equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ admits a solution which is
(A) Oscillating in t and exponential in x
(B) Exponential in t , oscillating in x
(C) Exponential in x and t
(D) Oscillating in x and t
4. The iterative scheme for square root of a number N in $\mathrm{x}=\sqrt{ } \mathrm{N}$ is $\mathrm{x}_{\mathrm{n}+1}=$
(A) $1 / 2\left(\mathrm{~N}+1 / \mathrm{x}_{\mathrm{n}}\right)$
(B) $1 / 2\left(x_{n}+N / x_{n}\right)$
(C) $1 / 2\left(x_{n}-2 N / x_{n}\right)$
(D) $\mathrm{x}_{\mathrm{n}}-2 \mathrm{~N} / \mathrm{x}_{\mathrm{n}}$
5. If at $\mathrm{x}=0,1,2,3$ and y is estimated by Lagrangian interpolation, then Lagrangian function for $\mathrm{x}=3$ is
(A) $1 / 2 x(x-1)(x-2)$
(B) $-(x-1)(x-2)(x-3) / 6$
(C) $x(x-1)(x-2) / 6$
(D) $x(x-1)(x-2)(x-3) / 6$
6. By Simpson's one third formula, Quadrature $\int_{x_{0}}^{x_{2}} y d x=$
(A) $2 \mathrm{~h}\left(\mathrm{y}_{0}-4 \mathrm{y}_{1}+\mathrm{y}_{2}\right) / 3$
(B) $\mathrm{h}\left(\mathrm{y}_{0}-4 \mathrm{y}_{1}+\mathrm{y}_{2}\right) / 3$
(C) $\mathrm{h}\left(\mathrm{y}_{0}+4 \mathrm{y}_{1}+\mathrm{y}_{2}\right) / 3$
(D) $\mathrm{h}\left(\mathrm{y}_{0}+2 \mathrm{y}_{1}+\mathrm{y}_{2}\right) / 3$
7. The solution of $d y / d x=f(x, y)$ with $y\left(x_{0}\right)=y_{0}$ by Runge Kutta $4^{\text {th }}$ order method at $\mathrm{x}=\mathrm{x}_{1}$ is $y_{1}=$
(A) $\mathrm{y}_{0}-1 / 4\left(\mathrm{k}_{1}-2 \mathrm{k}_{2}-2 \mathrm{k}_{3}+\mathrm{k}_{4}\right)$
(B) $\mathrm{y}_{0}+\left(\mathrm{k}_{1}+2 \mathrm{k}_{2}+2 \mathrm{k}_{3}+\mathrm{k}_{4}\right) / 6$
(C) $\mathrm{y}_{0}+1 / 4\left(\mathrm{k}_{1}-2 \mathrm{k}_{2}-2 \mathrm{k}_{3}+\mathrm{k}_{4}\right)$
(D) $\mathrm{y}_{0}+\left(\mathrm{k}_{1}-\mathrm{k}_{2}-\mathrm{k}_{3}+\mathrm{k}_{4}\right) / 3$
8. If $y_{1}=2, y_{2}=4, y_{3}=5$, the second order approximation at $\mathrm{x}=\mathrm{x}_{2}($ for $\mathrm{h}=1 / 2$) for $d y / d x=$
(A) 12
(B) 9
(C) $3 / 4$
(D) 3
9. If $y^{\prime \prime}-y=x$, the appropriate difference scheme at $x=x_{i}$ is
(A) $y_{i+1}-\left(2+h^{2}\right) y_{i}+y_{i-1}=h^{2} x_{i}$
(B) $y_{i+1}-\left(1+2 h^{2}\right) y_{i}+y_{i-1}=h^{2} x_{i}$
(C) $y_{i+1}-2 y_{i}+(1+2 h) y_{i-1}=h^{2} x_{i}$
(D) $y_{i+1}-2 h^{2} y_{i}+y_{i-1}=x_{i}$
10. The partial differential equation
$A u_{x x}+B u_{x y}+C u_{y y}=f$ is elliptic if
(A) $\mathrm{B}^{2}-4 \mathrm{AC}>0$
(B) $\mathrm{B}^{2}-4 \mathrm{AC}=0$
(C) $\mathrm{B}^{2}-4 \mathrm{AC}<0$
(D) $\mathrm{B}^{2}-4 \mathrm{AC}=$ complex
11. If the quantities $\overline{\mathrm{A}}^{\mathrm{i}}$ in $\overline{\mathrm{X}}^{\mathrm{i}}$ frame are related to quantities A^{j} in x^{j} frame by the relation $\overline{\mathrm{A}}^{\mathrm{i}}=\frac{\partial \overline{\mathrm{x}}}{\partial \mathrm{xj}} \mathrm{A}^{\mathrm{j}}$, then A^{i} are called
(A) covariant
(B) contravariant
(C) metric tensors
(D) hyper variant
12. If A_{ij} is symmetric then the number of independent quantities are
(A) $n(n-1)$
(B) $1 / 4 \mathrm{n}(2 \mathrm{n}+1)$
(C) $1 / 2 \mathrm{n}(\mathrm{n}-1)$
(D) $1 / 2 \mathrm{n}(\mathrm{n}+1)$

||||||||||||||||||||||||||||||

13. The change from non-ferromagnetic state to ferromagnetic state is associated with
(A) Phase transition of the first kind
(B) Phase transition of the second kind
(C) No change in the symmetry of the lattice
(D) No phase transition
14. The theory of co-operative phenomena, by including all interactions in three dimensional system is
(A) very easy
(B) very complicated
(C) neither easy nor complicated
(D) neither of the above three
15. A linear Ising chain of spins is not ferromagnetic because it can be easily broken. A single break of chain increases the energy by (where E is the energy of interaction between spins)
(A) 2 E
(B) 4 E
(C) 6 E
(D) 8 E
16. According to the Landau theory on diamagnetism, the diamagnetic contribution arises due to
(A) spinning motion of electrons
(B) orbital motion of electrons
(C) collective ordering of spins of parallel electrons
(D) none of the above
17. A photon in a definite spin state corresponds to a plane electromagnetic wave with
(A) only right circularly polarized
(B) only left circularly polarized
(C) either right or left circularly polarized
(D) zero momentum
18. Since photons obey BE statistics
(A) they are distinguishable
(B) they are indistinguishable
(C) there can not be number of photons with same ' k '(wave vector) and ' e ' (polarization vector)
(D) none of the above
19. Bose Einstein condensations of thermodynamic manifestations follows
(A) Second order phase transition
(B) First order phase transition
(C) Neither first order nor second order phase transition
(D) None of the above
20. A very small particle immersed in liquid having Brownian motion exhibits a random type of motion due to
(A) high applied pressure on the particle
(B) medium applied pressure on the particle
(C) variable applied pressure acting on the particle
(D) natural thermal fluctuation of pressure on the particle
21. A random process or stochastic process is such that the variable ' x '
(A) depends on independent variable in well defined manner
(B) does not depend in well defined manner on independent variable
(C) the variable ' x ' takes either zero or infinite value
(D) none of the above
22. The ESR frequency of an unpaired electron in a magnetic field of 0.3 T
(given $\mathrm{g}=2, \beta=11.274 \times 10^{-24} \mathrm{JT}^{-1}$, $\mathrm{h}=6.627 \times 10^{-34} \mathrm{Js}$) in multiple of $10^{6} \mathrm{~Hz}$ is
(A) 8397
(B) 2434
(C) 3126
(D) 4444
23. Which one of the following systems will show electron spin resonance spectrum?
(A) H
(B) H_{2}
(C) Na^{+}
(D) Cl^{-1}
24. In NMR experiment, a given organic compound with two kinds of protons exhibit signals at 50 Hz and 200 Hz using 60 MHz spectrometer. The position of signal at 50 Hz and 200 Hz in δ-scale is
(A) $0.88,3.33$
(B) $0.2,1.2$
(C) $0.1,0.6$
(D) $1.0,4.0$
25. The rotation spectrum for HCl shows a series of lines separated by $20.6 \mathrm{~cm}^{-1}$. The moment of inertia of the molecule is
(A) $2.65 \times 10^{-47} \mathrm{Kg} . \mathrm{m}^{2}$
(B) $3.12 \times 10^{-55} \mathrm{Kg} . \mathrm{m}^{2}$
(C) $4.0 \times 10^{-12} \mathrm{Kg} . \mathrm{m}^{2}$
(D) $16.0 \times 10^{8} \mathrm{Kg} . \mathrm{m}^{2}$
26. The number of fundamental vibrational frequencies in the Infra-red absorption spectrum of $\mathrm{H}_{2} \mathrm{O}$ is
(A) 3
(B) 4
(C) 5
(D) 6
27. The planar twisting mode of vibration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is
(A) Raman active
(B) Raman inactive
(C) Infrared active
(D) Neither Raman active nor Infrared active
28. Which one of the following compounds absorb ultraviolet radiations?
(A) Acetaldehyde
(B) Cyclohexane
(C) Ethanol
(D) Heptane
29. From extinction rules for face centred cubic crystals for the ratio of successive allowed XRD values of $h^{2}+k^{2}+l^{2}$ for FCC crystal is
(A) 1:2:3:4:5:6: ...
(B) 1:2:3:4:5:6:8:...
(C) $3: 4: 8: 11: 12: \ldots$
(D) 8:25:34:76: ...
30. In a solid the repulsive forces between atoms depends on
(A) repulsion between positively charged Nuclei only
(B) negatively charged electronic cloud of atoms only
(C) it depends both on nuclei and also electronic cloud of atoms
(D) it will not depend on positive charge of nuclei and also on negative charge of surrounding electronic cloud of atoms
31. The reciprocal lattice to $B C C$ lattice is
(A) BCC lattice
(B) FCC lattice
(C) SC lattice
(D) it is not possible to find the reciprocal lattice of BCC
32. The elastic scattering of x-ray photon by a crystal is governed by the wave vector selection rule (G is a vector in the reciprocal lattice, K is a wave vector of incident photon, K_{1} is the wave vector of scattered photon)
(A) $\mathrm{K}_{1}=\mathrm{K}+\mathrm{G}$
(B) $\mathrm{G}=\mathrm{K}_{1}+\mathrm{K}$
(C) $\mathrm{K}_{1}=\mathrm{K}$
(D) $\mathrm{K}=\mathrm{G}$
33. In the case of insulators, specific heat of solids is dependent on its temperature T by
(A) T^{3} law
(B) T-law
(C) T^{2} law
(D) T^{4} law
34. According to the KP model on band theory of solids, the atoms in the periodic lattice are positioned in the
(A) middle of the valley
(B) middle of the barrier
(C) only at the end edges of the solids
(D) at the boundary line between valley and the barrier
35. Calculate the frequency of $A C$ current when a voltage of $1 \times 10^{-6} \mathrm{v}$ is applied across the two superconductors which are separated by a thin insulating layer where tunneling of electron pair is possible
(A) 286 MHz
(B) 316 MHz
(C) 483.6 MHz
(D) 116 MHz
36. Defect structures are produced when the composition of an ionic crystal does not correspond to the stoichiometric formula. In case of FeO , the vacant cation sites are produced usually by heating it in
(A) Zinc atmosphere
(B) Oxygen atmosphere
(C) Chlorine atmosphere
(D) Carbon atmosphere
37. Tilt angle of a tilt boundary in BCC iron $(\mathrm{a}=2.87 \mathrm{AU})$ with edge dislocations $7500 \AA$ apart is
(A) 5°
(B) 8°
(C) 0.02°
(D) 16°
38. Most of the liquid crystal cells used in LCD display are of the type
(A) smetic
(B) twisted nematic
(C) cholestric
(D) none of the above
39. The binding energy of a nucleon in a nucleus or mass defect per nucleon is
(A) minimum for medium nuclei
(B) maximum for medium nuclei
(C) maximum for heavy nuclei
(D) minimum for heavy nuclei
40. The liquid-drop model of nucleus to emphasize nuclear structure, possible oscillations are considered in an
(A) incompressible liquid
(B) compressible liquid
(C) viscous liquid
(D) none of the above
41. The function of a moderator in an atomic reactor is to
(A) absorb gamma radiation
(B) slow down fast neutrons
(C) release heat energy
(D) none of the above
42. Nuclides which possess same mass number are known as
(A) isotopes
(B) isobars
(C) isotones
(D) none of the above
43. The concept of Dirac-Hole predicted the existence of
(A) positron
(B) pair production
(C) electrons possessing negative energy states
(D) all the above
44. Heavy hydrogen when bombarded with neutrons artificial hydrogen and tritium are formed. Tritium is composed of
(A) Proton and three neutrons
(B) Proton and two neutrons
(C) Proton and one neutron
(D) None of the above
45. All quarks possess same spin and baryon charge, but differ in
(A) strangeness
(B) hypercharge
(C) all quantum numbers of elementary particles
(D) all the above
46. Anti quarks do not form any part of
(A) mesons
(B) baryons
(C) leptons
(D) hadrons
47. Anti baryons consist of
(A) three quarks
(B) four quarks
(C) two quarks
(D) no quarks
48. Spin Orbit interaction is more predominant in
(A) Heavy elements
(B) Medium elements
(C) Light elements
(D) Heavy and light elements
49. WKB approximation is based on the expansion of the wavefunction in powers of
(A) \hbar
(B) \hbar^{2}
(C) \hbar^{3}
(D) none of the above
50. The unit for differential cross section for scattering is
(A) barn
(B) steredian $\times \mathrm{cm}^{2}$
(C) steredian $/ \mathrm{cm}^{2}$
(D) steredian $/ \mathrm{cm}^{3}$
51. The superposition of infinite number of spherical waves gives a plane wave, the individual waves are known as
(A) partial wave
(B) wavefront
(C) cylindrical wave
(D) none of the above
52. Relativistic wave equation provide
(A) relativistic Hamiltonian
(B) first order equation for both space and time
(C) both the above
(D) none of the above
53. Klein-Gordon equation is applicable for particles with
(A) zero spin
(B) spin $1 / 2$
(C) spin $3 / 2$
(D) spin 1
54. A relativistic wave equation which provides a positive definite probability density, is given by
(A) Dirac equation
(B) Klein-Gordon equation
(C) Noether's theorem
(D) None of the above
55. The wavefunction derived from the Dirac relativistic equation, which do not transform as four vectors are known as
(A) Dirac's spinors
(B) Fermions
(C) Bosons
(D) None of the above
56. Nuclear magnetic resonance depends on
(A) orientation of nuclear moment relative to small static applied magnetic field
(B) orientation of the electron magnetic moment
(C) orientation of nuclear moment relative to large static applied magnetic field
(D) none of the above
57. Threshold population inversion required for oscillations of laser
i. is proportional to the spontaneous life time of the upper level
ii. inversely proportional to passive cavity life time
iii. proportional to passive cavity life time
iv. is inversely proportional to spontaneous lifetime of the upper level
(A) i and ii are correct
(B) i and iii are correct
(C) ii and iv are correct
(D) iii and iv are correct
58. Assertion (A): Even in the absence of collisions and of thermal motions, line broadening takes place.

Reason (R): Because of the finite life time of excited state due to spontaneous emissions.
(A) A and R are true, and R is the correct explanation
(B) A and R are true but R is not the correct explanation
(C) A is true but R is false
(D) A is false but R is true
59. Match the following:
I. Doppler

1. Homogeneous broadening
II. Four level system
2. Ruby laser
III. Collision broadening
IV. Three level
3. He-Ne laser system

	I	II	III	IV
(A)	2	4	1	3
(B)	3	1	4	2
(C)	3	4	1	2
(D)	1	2	3	4

||||||||||||||||||||||||||||||

60. At thermal equilibrium of temperature T , for $\omega \ll K_{B} T / \hbar$
(A) Number of stimulated emissions exceeds the number of spontaneous emissions
(B) Number of spontaneous emissions exceeds the number of stimulated emissions
(C) Number of spontaneous emissions are equal to the number of stimulated emissions
(D) Emissions does not take place
61. Q switching of laser can be done by
I. Mechanical switching
II. Faster electronic switching
III. Using saturable absorbers
IV. all the above
(A) I and III are correct
(B) II and III are correct
(C) I, II and III are correct
(D) I and II are correct
62. Ionisation Gauges can measure Vacuum up to
(A) 10^{-1} to $10^{-3} \mathrm{~mm}$ of Hg
(B) 10^{-3} to $10^{-8} \mathrm{~mm}$ of Hg
(C) Up to 1 mm of Hg
(D) None
63. The temperature of a furnace is increasing at a rate of $0.2^{0} \mathrm{C} / \mathrm{Sec}$. The maximum possible time constant required for a first order instrument so that the temperature is measured with maximum error of $2^{0} \mathrm{C}$.
(A) 4 Sec
(B) 0.4 Sec
(C) 0.1 Sec
(D) 10 Sec
64. The steady State error for unit Ramp input in the case of instruments following First Order Response is equal to
(A) Natural Frequency
(B) Damping Ratio
(C) Time Constant
(D) Settling Time
65. Dummy Strain Gauges are used for
(A) Compensation for Temperature changes
(B) Increasing the sensitivity of the bridge in which they are used
(C) Calibration of Strain Gauges
(D) None of the above
66. How many Op-Amps are required to implement the following equation $\mathrm{V}_{\mathrm{o}}=-\mathrm{R}_{\mathrm{f}}\left[\mathrm{V}_{1} / \mathrm{R}_{1}+\mathrm{V}_{2} / \mathrm{R}_{2}+\mathrm{V}_{3} / \mathrm{R}_{3}\right]$?
(A) 1
(B) 2
(C) 3
(D) 4
67. In the Bath Tub Curve representing the failure rate of components/Instruments, the Region I of the curve corresponds to
(A) Constant Failure Region
(B) Infant Mortality Region
(C) Wear Out Region
(D) None of the above
68. Which of the following circuits are used in signal conditioning ?
I. Filters
II. Attenuators
III. Amplifiers
(A) I \& II only
(B) II \& III only
(C) All
(D) None
69. Match the following:
I. Chi-Square Test
70. Loading Effects
II. Standard
Deviation
III. Impedance
Matching
IV. Lock-in Detector
71. Feedback
72. Goodness of Fit
| II III IV
(A) $5 \quad 3 \quad 1 \quad 2$
(B) $3 \quad 4 \quad 5 \quad 1$
(C) $2 \begin{array}{llll}2 & 3 & 4\end{array}$
(D) $1 \begin{array}{llll} & 2 & 5 & 4\end{array}$
73. The number of terms in semi-emperical mass formula is
(A) 6
(B) 7
(C) 8
(D) 9
74. In a nuclear reaction $\mathrm{p}+{ }^{12} \mathrm{C} \rightarrow \mathrm{d}+{ }^{11} \mathrm{C}$, by proton with a laboratory energy of 10 MeV incident on to stationary ${ }^{12} \mathrm{C}$ nucleus, the equivalent centre of energy of proton is
(A) 9.23 MeV
(B) 10.00 MeV
(C) 11.52 MeV
(D) 8.46 MeV
75. Nuclear forces have the following characteristics:
I. Nuclear forces are saturated
II. Nuclear forces are spin independent
III. Nuclear forces are charge independent
IV. Nuclear forces are non central forces
(A) I,III and IV are correct
(B) II and III are correct
(C) I, II and III are correct
(D) I and II are correct
76. Physical quantities that are conserved in a nuclear reaction are
I. Energy
II. Charge
III. Spin
IV. Hyper charge
(A) I, III and IV are correct
(B) I, II and III are correct
(C) I, II and IV are correct
(D) I and IV are correct
77. Assertion (A) : Electrons reside inside the nucleus.

Reason (R) : Nuclei emit electrons in beta decay.
(A) A and R are true, and R is the correct explanation
(B) A and R are true but R is not the correct explanation
(C) A is true but R is false
(D) A is false but R is true
75. Assertion (A) : Nuclear force is very attractive.

Reason (R): Stable nuclei exist in nature.
(A) A and R are true, and R is the correct explanation
(B) A and R are true but R is not the correct explanation
(C) A is true but R is false
(D) A is false but R is true

Space for Rough Work

APSET - 2018

Key

Subject: (22) Physical Sciences
PAPER - II

Q.No	Ans.	Q.No.	Ans.	Q.No.	Ans.	Q.No.	Ans.	Q.No.	Ans.
1	B	21	B	41	C	61	D	81	C
2	Add	22	A	42	B/C	62	D	82	D
3	B	23	A	43	A	63	A	83	C
4	B	24	D	44	C	64	C	84	A
5	C	25	C	45	C	65	C	85	A
6	D	26	A	46	B	66	D	86	B
7	C	27	A	47	D	67	B	87	B
8	A	28	A	48	B	68	A	88	B
9	D	29	B	49	B	69	D	89	A
10	C	30	B	50	A	70	A	90	A
11	D	31	C	51	B	71	Add	91	C
12	D	32	A	52	D	72	A	92	C
13	C	33	A	53	A	73	A	93	B
14	A	34	C	54	C	74	B	94	C
15	D	35	B	55	A	75	A	95	C
16	D	36	B	56	B	76	C	96	C
17	B	37	C	57	B	77	C	97	B
18	B	38	A	58	C	78	D	98	D
19	B	39	A	59	B	79	A	99	C
20	Add	40	D	60	C	80	A	100	D

